

Coastal Hazards Resilience Network 2019 Annual Meeting

Coastal Hazards Resilience Network (CHRN) 2019 Annual Meeting Wednesday June 5th, 2019 – 9:00 a.m. - 4:00 p.m. University of Washington Tacoma Campus

Theme: Coastal Flooding & Erosion

Audience: Meeting open to CHRN members and stakeholders, agencies, local governments, academics, Tribes, and non-profits affected by and involved in coastal hazards planning. **Goals:**

- To promote information exchange on the current state of knowledge about erosion and coastal flooding, and share resources needs for and lessons learned from projects in Washington State and other coastal states.
- To create a space for practitioners and stakeholders to connect and develop relationships, and ultimately partnerships.
- To create an opportunity for more coordination and collaboration between actors when addressing coastal hazards and improving coastal resilience.

Agenda

8:30-9:00 Check-in, Coffee, and Networking Board

<u>*Purpose:*</u> To give everyone the opportunity to mention projects or issues they are working on and to connect and potentially partner with other audience members.

9:00-9:15 Welcome

Felicia Olmeta-Schult, Washington Sea Grant Marine Policy Fellow Shoreline & Coastal Management, Washington Department of Ecology

9:15-10:45 Coastal Flooding & Erosion State of the Science

*Four 15-min talks with 20 min for discussion with the presenters. *Time for 2 short Q&A after each talk.

<u>Purpose:</u> To share with the audience the current state of knowledge around erosion and coastal flooding in Washington State. This will be done by presenting both scientific and local community perspectives on these hazards, and what we could expect in the future.

• Coastal Erosion Assessment for Grays Harbor County Hazard Mitigation

George Kaminsky, Coastal Monitoring & Analysis, Department of Ecology

• Where we are and what's next?

Jerry Franklin, Floodplain Management, Department of Ecology Ted Perkins, FEMA Region 10

- Washington Coastal Resilience Project Update: Extreme Coastal Water Level Assessment to support SLR Planning Ian Miller, Washington Sea Grant
- What's making future sea level so hard to predict accurately? Robert Bindschlader, NASA Emeritus Scientist

10:45-11:00 Break

11:00-12:30 How are Coastal Communities in Washington Dealing with these Issues?

*Four 15-min talks with 20 min for questions at the end. *Time for 2 short Q&A after each talk.

<u>Purpose:</u> To give an opportunity to coastal communities to explain how they addressed or will address erosion and coastal flooding issues, and to share lessons learned from these projects.

- Updates from the shoreline: Addressing sea level rise impacts in King County Lara Whitely Binder, King County
- Sea Level Rise Hazard Mapping, Decision Tools, & Data Andrea MacLennan, Coastal Geologic Services
- **Nature-Based Dynamic Revetment for Shoreline Stabilization at North Cove** George Kaminsky, Coastal Monitoring & Analysis, Department of Ecology
- Low and Wet: A Multiple Benefits, Multiple Entity Coastal Flooding Adaptation Case Study from the Dungeness River Delta Ian Miller, Washington Sea Grant

12:30-1:15 Lunch (provided)

1:15-2:30 How are other States Dealing with these Problems?

*Three 15-min talks and 20 min for questions at the end. *Time for 2 short Q&A after each talk.

<u>*Purpose:*</u> To learn about regulations, tools, resources and other approaches used by other coastal states to address erosion and coastal flooding.

- Addressing coastal hazards through the NC Coastal Zone Management Program Braxton Davis, North Carolina Division of Coastal Management Department of Environmental Quality
- Addressing coastal hazards along the California coast through planning and permitting Mary Matella, California Coastal Commission
- Addressing coastal erosion in Hawaii Justine W. Nihipali, Hawaii Coastal Zone Management Program
- 2:30-2:45 Break

2:45-3:45 CHRN Happenings

*Three 20-min talks (including Q&A).

<u>Purpose:</u> To present work in progress on the new CHRN website, including tools such as the Coastal Adaptation Atlas. To discuss the future of the CHRN annual meeting and its conversion into an annual conference.

• The CHRN website: a Revamped Resource Jackson Blalock, Washington Sea Grant

o CHRN's Adaptation Case Studies

Katrina Radach, Washington Sea Grant Marine Policy Fellow The Nature Conservancy

Coastal Hazards Conference 2020
Bobbak Talebi, Shoreline & Coastal Management, Department of Ecology

3:45-4:00 *Felicia Olmeta-Schult, Washington Sea Grant Marine Policy Fellow Shoreline & Coastal Management, Department of Ecology*

4:30-6:00 Be Happy and Connect with your Colleagues @ <u>Harmon Brewing Company</u> (1938 Pacific Ave, Tacoma 98402).

See next page for additional details (directions, parking, Wi-Fi access, etc.)

Meeting Details

The CHRN 2019 Annual Meeting will take place at University of Washington Tacoma Campus. Set in the historic Union Station District, UW Tacoma owes its charm to century-old, brick buildings that were built to last by businesses that depended on the railroad in the late 1880s and early 1900s. The 46-acre campus footprint is located on a hillside overlooking the Port of Tacoma and Mount Rainier, on the southern edge of downtown Tacoma, next to museums and the beautifully reconstructed Union Station.

Note: Non-YMCA member attendees of the event are not permitted to use the recreational facilities (locker rooms and restrooms not included), equipment, services, or programs of the University Y Student Center while in the facility.

<u>Directions</u>: University Y Student Center (UWY) Room 304, 1710 Market St, Tacoma, WA 98402 (<u>Google</u> <u>Map</u>).

Parking options (click here for parking map):

- There is free street parking around the UWY.
- Lot WT40 (Court 17 Garage; enter from Court C and 17th; 18 all-day parking spots available).
- Lot WT31 (SW Jefferson and 21st; bigger lot, also all-day and hourly parking).
- Another option is parking at the Tacoma Dome Garage for free and taking the Link Light Rail that runs every 10 minutes from the garage to campus (about a 5 minute ride).

Lunch and coffee/tea will be provided. Lunch boxes labeled for people with dietary restrictions. Paper cups will be provided. To save from waste, feel free to bring your personal travel mugs.

UW guest wireless access:

- 1. To login to UW Wi-Fi, please ensure Wi-Fi is turned on via your device settings and select the **University of Washington** as the Wi-Fi network to connect to.
- 2. Open your internet browser and view a webpage outside the UW to bring up the authentication page.
- 3. You will then be automatically prompted to enter the supplied **UW NetID**: event0532 and **Password**: w5d4=m9t5=n7a6
- 4. Once you have successfully logged in (authenticated) you will be able to use services outside the UW for up to 12 hours without having to re-authenticate.

Slido access:

- Slido is a tool that allows you to submit your questions and express your opinion by sending your votes in via live polls.
- Each presentation will be 15 minutes long with 1-2 questions at the end (~3-5 minutes total). After the presentations, we will have 20 minutes for questions. Submit your questions or vote for them ("thumb up") using Slido anytime during the session. We will start the 20 minutes with the questions with the most "thumbs up."

To join:

- 1. Simply take out your smartphone or laptop and open your browser.
- 2. Go to Slido.com and enter the event code #CHRN2019.
- 3. You can now ask questions and up-vote the best ones.
- 4. If you have a question for a speaker in particular, make sure to mention their name.

Coastal Erosion Assessment for Grays Harbor County Hazard Mitigation

George Kaminsky, Diana McCandless, and Alex Rosen

Motivation

- 1. Despite the long history of coastal erosion impacts in Grays Harbor County, this hazard was never included in the County's Hazard Mitigation Plan.
- 2. Including coastal erosion in the County Plan provides a basis for local jurisdictions to develop additional information for their local plan.
- 3. The County and incorporated cities are eligible for project design funds to address the hazard.
- 4. The coastal erosion hazard profile for this relatively data rich area provides a model for content to be developed for other counties.
- 5. Ultimately, improved county hazard profiles improves the State Hazard Mitigation Plan.

Washington State

Enhanced Hazard Mitigation Plan

https://www.mil.wa.gov/other-links/enhanced-hazard-mitigation-plan

Effective 2018-2023

Approved 10/1/2018

Prepared by the Washington Emergency Management Division

http://www.co.graysharbor.wa.us/departments/emergency_management/Hazard_Mitigation_Planning.php

Grays Harbor County 2018 Multi-Jurisdiction Hazard Mitigation Plan Update Volume 1: Planning-Area-Wide Elements

FINAL July 2018

Grays Harbor County Coastal Erosion Profile

- 1. General Background What is coastal erosion, and how, when, and where does it occur?
- 2. Coastal erosion planning consider a decade back and forward
- 3. Map and quantify EHAs impacted structures, parcels, shoreline extent, acres
- 4. Document and describe previous occurrences of erosion a. For GHC, this includes coastal construction and mitigation history
- 5. Describe recent erosion events and conditions causes, effects, and responses
- 6. Vulnerability Assessment Impact on:
 - a. Life, Health and Safety
 - b. Property
 - c. Critical Facilities and Infrastructure
 - d. Economy
 - e. Environment
- 7. Future Development Trends needs and challenges

Summary Inventory of Grays Harbor Erosion Hazard Areas											
Jurisdiction &	Number of	Number	Length of Shoreline		Number	Other					
Name of Area	Structures	of Parcels	(km)	(miles)	of Acres	Other					
City of Ocean Shor	es										
North Jetty area	13	31	2.53	1.57	16.9						
Oyhut Wildlife	20	30	3.28	2.04	139.9	Also Sewage Treatment Plant, Marine					
Recreation Area	22	(1	5 01	2 (1	156.9	View Dr SE					
Subiolai	33	01	5.81	3.01	150.8						
City of Westport											
						Excluded in the parcel count are: 4 large					
Westport	9	49	4.00	2.49	25.6	State Parks parcels, 2 City of Westport parcels					
Subtotal	9	49	4.00	2.49	25.6						
Grays Harbor County											
Copalis River & Connor Creek	3	24	3.73	2.32	141.7						
Cohassett Beach	0	1	1.49	0.93	9.6						
Whitcomb Flats	0	0	4.39	2.73	63.5						
Damon Point	0	0	2.49	1.55	150.2	Affects access to a recreation area					
Subtotal	3	25	12.10	7.52	365.0						
Total	45	135	21.91	13.62	547.4						

Profile "Worm"

			History of E	Beach and N	Nearshore	Nourishm	ent in Grays Harbor County	
	Nearsh	Nearshore Sites		Beach	Sites			
Year	South Beach (cy)	Half Moon Bay (cy)	Breach Fill (cy)	Half Moon Bay (cy)	Westport (cy)	Ocean Shores (cy)	Description of Beach Nourishment	
1992		200,000						
1993	373,000							
1994	265,000	146,000	600,000				600,000 cy sand to fill the breach	
1995				300,295	82,000		300,295 cy sand south of revetment; 82,000 cy sand at City outfall	
1996		274,780						
1997		308,604		5,000			5,000 cy sand at HMB shoreline berm south of revetment	
1998		421,468						
1999	76,187	228,470		228,963			228,963 cy sand at revetment extension beach fill	
2000			11,600				11, 600 cy of 12" minus cobble and gravel along HMB Breach Fill	
2001			16,100				16,100 cy of 12" minus cobble and gravel along HMB Breach Fill	
2002	75,219	378,441	135,000				135,000 cy sand at HMB	
2003	125,388	329,106			1,700		1,700 cy sand at HMB beach along dune trail	
2004	262,176	289,652	29,553				29,553 cy sand at HMB Breach Fill	
2005	217,909	102,184	22,779				22,779 cy sand at SB at Breach Fill	
2006	55,170	126,892						
2007		140,406						
2008		171,353						
2009	214,502	144,975						
2010	118,182	91,720	30,000				10,000 cy sand at HMB Breach Fill; 20,000 cy sand at SB Breach Fill	
2011	298,251	177,150						
2012	142,313	111,205	30,000				30,000 cy sand from upland source to Breach Fill	
2013	477,637	86,147						
2014	498,440							
2015	506,330					3,350	1,600 cy of sand + 1,750 cy of sand placed in front of geotubes	
2016	544,980							
2017	499,001	101,019						
Sum	4,749,685	3,829,572	875,032	534,258	83,700	3,350		
	Total Nearshore		Total Beach				Total Nourishment	
	8,579,257		1,496,340				10,075,597	

Westport Summary

- The South Beach shoreline along Westport and Cohassett Beach are experiencing a sediment deficit that is not likely to be augmented by natural processes
- Loss of dune and coastal erosion threatens condominiums and houses fronting Dune Crest Drive
- Dune erosion scarp extends from the jetty to 5.1 km south along shoreline
- Shoreline position is dependent on jetty breach fill condition
- Average erosion of 63,100 cubic yards/year of sediment from beaches and dunes
- Beach and dune nourishment in Westport is essential to avoid catastrophic losses to upland development and infrastructure
- The maintenance of the Half Moon Bay shoreline is relatively intense, consisting of routine nearshore and beach nourishment, and relatively routine repair of the Point Chehalis revetment.

Cross-Shore Distance (meters)

Nourishment

November 2, 2015 Photo courtesy of Nick Bird, City of Ocean Shores

Oyhut Bay and Quinault Marina Summary

- Long term erosion threatens loss of RV and marina facilities and boat access
- Overwash of Damon Spit and sedimentation of Marina and boat access channel
- Damon Spit becoming narrower, flatter, and migrating toward Marina
- Long term viability of Marina will require considerable engineering and maintenance dredging
- The Marina breakwater and the eastward end of the maintained North Jetty near the wastewater treatment plant provide anchor points that control the equilibrium location of the Oyhut Bay shoreline.
- More study is needed to develop a long-term prediction of the Oyhut shoreline and the relative importance of the anchor point at the Quinault Marina.

Copalis River and Connor Creek – Mouth Migration

Copalis River and Connor Creek – Mouth Migration

FEMA'S COASTAL FLOOD MAPPING EFFORTS

TED PERKINS, PE REGIONAL ENGINEER FEMA REGION 10 JUNE 5, 2019

OUTLINE

- Background of the National Flood Insurance Program
- Regional Coastal Flood Study Efforts

Floor Elevation Above BFE

* Example: V-Zone building with an open foundation. \$250,000 building coverage, \$100,000 contents coverage. Reductions compared to lowest flood at BFE. Note: This does not include recent rate increases. (FEMA Home Builder's Guide to Coastal Construction)

Basis for Floodplain Mapping

250,000 Rivers in US – on average 2,500 rivers are seeing the 1% flood or greater every year

3,500,000 Miles of River – on average 35,000 miles of river are seeing the 1% flood or greater every year.

42,500 Miles of Coastline are mapped – on average 425 miles of coastline are seeing the 1% flood or greater every year.

RISKMAP, THE NFIP AND HAZARD MITIGATION PLANNING

WASHINGTON RISK MAP WEBSITE

https://waecy.maps.arcgis.com/apps/MapSeries/index.html?appid=8451cb0db0c4461182e592e b5a43400a

INITIATIVES

COASTAL ANALYSIS MODELING COMPARISON

Guidelines for Coastal Flood Hazard Mapping and Analysis for Pacific Coast of the United States January 2005

	Old Approach	New Approach
Analysis Method	USACE Shore Protection Manual	FEMA Pacific Coast Guidelines (2005)
Wind data	Short Periods of Observations	Regional Hindcast Models
Water Level Model	Seattle Tide Gage	ADCIRC Model Puget Sound
Wave Model	1-Dimensional	2-Dimensional (SWAN)
Topography	USGS Contour Maps	2010-15 LiDAR data
Study Scope	Detail Few Specific Areas	Entire Populated US Coastline

COASTAL ANALYSIS OVERVIEW

STEP 1: SALISH SEA & PUGET SOUND WATER LEVEL MODELING

STEP 1: SALISH SEA & PUGET SOUND WATER LEVEL MODELING (ADCIRC)

- ADvanced CIRCulation Model (ADCIRC)
- Model Inputs:
 - Bathymetry
 - Wind forcing
 - Pressure
 - Tidal forcing
- Model Outputs:
 - Water elevation
 for 150 peak
 water level events

STEP 1: SALISH SEA & PUGET SOUND WATER LEVEL MODELING (ADCIRC)

EXAMPLE CALIBRATED ADCIRC WATER LEVEL FRIDAY HARBOR

STEP 1 - WAVE MODELING

- SWAN model grid
- Variable grid resolution for nearshore/offshore regions
- 50-year hindcast wind fields
- 150 modeled storm events

STEP 2: WAVE SETUP, RUNUP & OVERTOPPING (TRANSECT ANALYSIS)

Transect Analysis

Water Level & Wave Data

Total Water Level

TOTAL WATER LEVEL 1. WATER LEVEL (SURGE) 2. WAVES 3. SETUP, RUNUP AND/OR OVERTOPPING

STEP 2: WAVE SETUP AND RUNUP (TRANSECT ANALYSIS)

STEP 3: FLOODPLAIN MAPPING

DIGITAL FLOOD INSURANCE RATE MAPS

QUESTIONS???

TED PERKINS, PE REGIONAL ENGINEER FEMA REGION X <u>DWIGHT.PERKINS@FEMA.DHS.GOV</u> 425-487-4684

WCRP Update: Extreme Coastal Water Level Assessment

Ian Miller, PhD Coastal Hazards Specialist Washington Sea Grant immiller@uw.edu

With

Guillaume Mauger Harriet Morgan Eric Grossman Nathan Van Arendonck Zhaoqing Yang

THE WASHINGTON COASTAL RESILIENCE PROJECT

UNIVERSITY of WASHINGTON

WCRP Update: Extreme Coastal Water Level Assessment

A2018

ASSESSMENT

PROJECTED SEA LEVEL RISE for WASHINGTON STATE

Updated sea level projections published last summer

Available at <u>http://www.wacoastalnetwork.com/</u> along with supplementary data and materials

How frequent are "extreme" events at my location? How high can they get? How high WILL they get?

Incorporating extremes into SLR planning: A case study courtesy of the JSKT Kailin Property, Blyn WA

Here is some coastal infrastructure we want to try to make good decisions about. Will it possibly be at risk during an extreme event in the future?

Note: These tidal elevations do not include the increased height of storm tides

Planning Scenario: Highest Water Level in 2014

Planning Scenario: RCP 8.5, 1% chance of exceedance (high magnitude, low probability)

Note: These tidal elevations do not include the increased height of storm tides

Note: These tidal elevations do not include the increased height of storm tides

Lets go back to here...this is the step we are trying to inform with our current work

Note: These tidal elevations do not include the increased height of storm tides

Planning Scenario: Highest Water Level in 2014

First Key Element: "Still" vs. "Total" Water Level

Second Key Element: A Return Frequency Framework (where possible)

Seattle, WA

Third Element: Tie everything to current MHHW

The key result: SWL

100-yr

Puget Sound/Strait of Juan de Fuca

20-yr

5-yr

2-yr

Return

Frequency:

50-yr

Coast 2-yr 2-yr 20-yr 100-yr 100-yr

t)	0	2.2	2.6	2.9	3.1	3.2	2
	0.5	2.7	3.1	3.4	3.6	3.7	3
	1.0	3.2	3.6	3.9	4.1	4.2	3
	1.5	3.7	4.1	4.4	4.6	4.7	4
(fee	2.0	4.2	4.6	4.9	5.1	5.2	4
Sea Level Scenario (2.5	4.7	5.1	5.4	5.4 5.6 5.		5
	3.0	5.2	5.6	5.9	6.1	6.2	5
	4.0	6.2	6.6	6.9	7.1	7.2	6
	5.0	7.2	7.6	7.9	8.1	8.2	7
	6.0	8.2	8.6	8.9	9.1	9.2	8
	7.0	9.2	9.6	9.9	10.1	10.2	9
	8.0	10.2	10.6	10.9	11.1	11.2	10
	9.0	11.2	11.6	11.9	12.1	12.2	11
	10.0	12.2	12.6	12.9	13.1	13.2	12

2.9	3.3	3.7	3.9	4.0
3.4	3.8	4.1	4.4	4.5
3.9	4.3	4.7	4.9	5.0
4.4	4.8	5.2	5.4	5.5
4.9	5.3	5.7	5.9	6.0
5.4	5.8	6.2	6.4	6.5
5.9	6.3	6.7	6.9	7.0
6.9	7.3	7.7	7.9	8.0
7.9	8.3	8.7	8.9	9.0
8.9	9.3	9.7	9.9	10.0
9.9	10.3	10.7	10.9	11.0
10.9	11.3	11.7	11.9	12.0
11.9	12.3	12.7	12.9	13.0
12.9	13.3	13.7	13.9	14.0

A Puget Sound "Extreme Event"

Photo from Cliff Mass Weather Blog, courtesy of West Seattle Blog

3.1 ft relative to MHHW

Seattle, 17 December 2012

Use it to assess the change in frequency of an existing event

	Sea-level scenario	Still Water (i.e. tides + surge) Return Frequency i feet relative to MHHW						
		<u>1-yr</u>	<u>5-yr</u>	<u>20-yr</u>	<u>50-yr</u>	<u>100-yr</u>		
	0	0.8	2.2	2.6	2.9	/ 3.2		
	0.5	1.3	2.7	3.1	3.4	3.7		
THE OWNER CONTRACTOR	1	1.8	, 3.2 ←	3.6	3.9	4.2		
	1.5	2.3	3.7	4.1	4.4	4.7		
	2	2.8	4.2	4.6	4.9	5.2		
	2.5	3.3	4.7	5.1	5.4	5.7		
Every Day	3	3.8	5.2	5.6	5.9	6.2		
at High Tide	4	4.8	6.2	6.6	6.9	7.2		
	5	5.8	7.2	7.6	7.9	8.2		
	6	6.8	8.2	8.6	8.9	9.2		
	7	7.8	9.2	9.6	9.9	10.2		
	8	8.8	10.2	10.6	10.9	11.2		
	9	9.8	11.2	11.6	11.9	12.2		
	10	10.8	12.2	12.6	12.9	13.2		

Key Result: TWL on the coast

			Tok	e Point/South		Makah Bay/North Coast						
- Return Frequency:		2-yr	5-yr	20-yr	50-yr	100-yr		2-yr	5-yr	20-yr	50-yr	100-yr
					1	1	1			1		
	0	10.9	11.5	12.9	13.6	14.2		9.8	11.6	12.0	12.8	13.2
	0.5	11.4	12	13.4	14.1	14.7		10.3	12.1	12.5	13.3	13.7
'io (feet)	1.0	11.9	12.5	13.9	14.6	15.2		10.8	12.6	13	13.8	14.2
	1.5	12.4	13	14.4	15.1	15.7	1	11.3	13.1	13.5	14.3	14.7
	2.0	12.9	13.5	14.9	15.6	16.2	1	11.8	13.6	14	14.8	15.2
	2.5	13.4	14	15.4	16.1	16.7	1	12.3	14.1	14.5	15.3	15.7
ena	3.0	13.9	14.5	15.9	16.6	17.2	1	12.8	14.6	15	15.8	16.2
Sci	4.0	14.9	15.5	16.9	17.6	18.2	1	13.8	15.6	16	16.8	17.2
eve	5.0	15.9	16.5	17.9	18.6	19.2	1	14.8	16.6	17	17.8	18.2
Sea Li	6.0	16.9	17.5	18.9	19.6	20.2		15.8	17.6	18	18.8	19.2
	7.0	17.9	18.5	19.9	20.6	21.2	1	16.8	18.6	19	19.8	20.2
	8.0	18.9	19.5	20.9	21.6	22.2	1	17.8	19.6	20	20.8	21.2
	9.0	19.9	20.5	21.9	22.6	23.2	1	18.8	20.6	21	21.8	22.2
	10.0	20.9	21.5	22.9	23.6	24.2	1	19.8	21.6	22	22.8	23.2

What if I want a TWL return frequency information on Puget Sound?

Answer 1: Maybe you don't really need it

Answer 2: Use something like a BFE

Answer 3: Maybe you can use an event of record for your location?

Answer 4: New wave modelling provides some sense for the real extremes...but its not perfect

Thank you!

-15
What's making future sea level so hard to predict accurately?

Robert Bindschadler (NASA – retired) and Ted Scambos¹, Twila Moon², Waleed Abdalati¹, Jill Gambill³

¹ESOC, ²NSIDC, both at CIRES, University of Colorado Boulder; ³Marine Extension and Georgia Sea Grant, University of Georgia

Multiple Global & Regional Effects

- Glaciological
 Ice Mass Loss
- Geodetic
 - Gravitational
 - Tectonic
 - Subsidence
- Oceanic
 - TemperatureCurrents
- Meteorological
 - Wind-driven waves

Global Sea Level Trend, 1993-2018

Leuliette, 2018; NOAA Laboratory for Satellite Altimetry

Observed and Projected Change in Global Mean Sea Level

IPCC AR5;

Including potential aspects of **rapid ice sheet & glacier decline** broadens projected range.

Kopp et al., 2014

Forecasts for ocean heat and glacier loss

Kopp et al., Earth's Future, 2014

Large potential future SLR from land ice loss

Kopp et al., Earth's Future, 2014

Oceanic Perimeter is Key

Ice sheets HATE water!

Complex dynamics at the floating edge of an ice sheet

Marine Ice Cliff Instability (Example: Helheim Glacier, Greenland)

Marine Ice Sheet Instability (Example: Thwaites Glacier, Antarctica)

Ice Shelves Buttress Ice Sheets

years to form

Disintegrate in

weeks

180 miles: Seattle to Portland

Sea level rise will not be evenly distributed

Sea level rise due to ice loss from **Greenland Ice Sheet** under RCP8.5, mm/year

Sea level rise due to ice loss from **West Antarctic Ice Sheet** under RCP8.5, mm/year

Horton et al., Ann Rev Env Resour, 2018

Sea level rise will not be evenly distributed

Dynamic sea level change under RCP8.5, mm/year

Summary

- SLR projections are very complex and highly dependent on future GHG concentrations
- Major additional uncertainty in land-ice contributions to SLR result from complex dynamics at the oceanic edges of ice sheets
 - Strongly asymmetric (slightly better or much worse are equally probable)
- Progress is being made

field studies are ongoing, but challenging

• Source of land-ice contributions matters--A LOT!

Thank you!

Questions?

Updates from the shoreline: Addressing sea level rise impacts in King County

LARA WHITELY BINDER CLIMATE PREPAREDNESS SPECIALIST KING COUNTY

> CHRN Annual Meeting June 5, 2019

CLIMATE ACTION Clean Future. Strong Communities.

Random Actions of Adaptation (2007-present)

- **Remapped** coastal (and riverine) floodplains.
- **Raised base elevation** for new construction to three feet above the 100-yr flood elevation.
- Consider sea level rise in public infrastructure projects.
- **Consider** sea level rise in shoreline restoration projects.
- Notify developers about sea level rise.
- Encourage project developers to consider sea level rise.
- Assessed options for coastal roads on Vashon Island.
- Multiple impact assessments on wastewater conveyance infrastructure
- Sea level rise mapping (2 and 5 feet)
- Impact assessments for King County-owned assets (ongoing)
- **Developing a strategy for sea level rise (ongoing)** includes proposed code changes

"Picking the Number(s)" for King County

Probability of exceedance value =

% probability that sea level rise will be *higher* than the value shown

Yellow = values King County used in most recent mapping

King County has three different authorities that apply to the marine shoreline (regulatory levers)

- King County is **the local land-use authority** in unincorporated areas (*Comp Plan, SMP, permitting*)
- King County has public health authority for on-site sewage systems and drinking water supplies for the entire county (*Heath Code*, *permitting*).
- King County implements certain **floodplain management and flood risk reduction authorities** for the entire county via agreement with the King County Flood Control District (*Flood Hazard Management Plan*).

Addressing Changes in Coastal Flood Risk

<u>Key Proposal</u>: Create a new "Sea Level Rise Buffer Zone" and set requirements within this new zone

Other proposed changes related to coastal flood risk

Strengthen requirements for coastal 100-year floodplain

Groundwater wells:

- No new wells in the coastal floodplain
- All new wells in the SLR buffer zone need to have well casing that extends to +3 feet BFE
- Substantial improvements in floodplain or SLR buffer = well must be moved or retrofitted to +3 feet BFE standard

Similar provisions for onsite septic (in Public Health code)

Addressing Erosion and Bulkheads

Addressing Erosion and Bulkheads (Vashon/Maury Isl.)

Trends?

- Difficult to see trends in erosion; event-driven
- Getting more questions about SLR
- Seeing more retaining walls popping up

Encouraging erosion is a priority

- Focusing on 4-5 drift cells but still opportunistic; timing will sellers in target areas with available \$\$
- SLR "relatively easy to incorporate" in VMI restoration pulling infrastructure out

Changing demographics:

- Longtime, aging owners (not all wealthy) with bulkheads reaching a certain age.
- More Air B&Bs/2nd homes (anecdotally)

Proposed Comp Plan Changes: Erosion & Bulkheads (in review)

Increased setback requirement for bluffs that extend into the coastal high hazard area or the SLR buffer:

- Establish 75 feet as the standard setback on top of steep slopes for new construction (was 50 feet).
- Allow for 50-foot setback if geotechnical report demonstrates 50 years of erosion potential.
- Require geotechnical reports to account for increased erosion and landslide rates due to sea level rise.

Notable: The one provision where we have to define an amount of SLR and a rate

Proposed Comp Plan Changes: Erosion & Bulkheads (in review)

Strengthen bulkhead requirements for developed parcels

- Increase toe of bulkhead elevation requirement to three feet above the Mean Higher High Water elevation level.
- If not feasible, require structure to be elevated to 3 feet above the 100-year floodplain elevation OR moved back to allow for 50 years of erosion so bulkhead is not needed.
- If the cost of elevating or moving the structure is less than the cost of the bulkhead, construction of the bulkhead "shall not be approved"
- If elevating or moving structure is not feasible, then allow toe of bulkhead to be as low as the Mean Higher High Water elevation.

NEXT STEPS

Comp Plan Changes

- Public meeting on Vashon specifically to discuss SLR and <u>R</u>related proposed Comp Plan changes (July 2)
- Transmittal to Executive for review (August) and Council (Sept 30)

Other work

- Investment in USGS CoSMoS modeling (incl. bluff erosion)
- Finish SLR strategy
- 2020 Strategic Climate Action Plan

Learn more at: www.kingcounty.gov/climate

LARA WHITELY BINDER

Climate Preparedness Specialist lwbinder@kingcounty.gov 206.263.0825

Sea Level Rise Hazard Mapping, Decision Tools, & Data

Tools to evaluate and communicate about SLR implications

Andrea MacLennan, MS

Senior coastal geomorphologist Coastal Geologic Services, Inc

June 5, 2019

CHRN Annual Meeting UW Tacoma

SLR Hazards, Decision Tools, and Data

2019 CHRN Annual Meeting

Overview: Mapping SLR hazards, Decisions Tools, and New Data

SLR Hazard Mapping: SJ County Assessment How vulnerable is this shore to SLR? What hazards are present? Where?

Tools for Communicating & Making Decisions

How will my shore respond to SLR? What are appropriate ways to adapt?

New Data to Inform SLR Planning & Restoration Where should we focus conservation? Where should we focus restoration?

SLR Hazards, Decision Tools, and Data

2019 CHRN Annual Meeting

Objectives

- GIS-based assessment of coastal bluff erosion and inundation
 - Identify most vulnerable areas in county
- Friends of San Juans, funded by EPA, completed in 2013.
- SLR projections (NRC 2012):
 - 2050, 2100
 - Medium (0.5 FT, 2 FT) and High scenarios (1.6 FT, 4.7 FT)

Inundation

- Standard bathtub model
- Created MHHW using Vdatum
- Created contours for HOWL and each scenario and horizon
- Created polygons from lines

MHHW = Mean Higher-High Water HOWL = Highest Observed Water Level (at Friday Harbor)

Coastal Bluff Recession

- Measured background recession rates from stratified sample of 50 shoreforms:
 - Shoretype
 - Wave exposure
- 1960s 2009
- DSAS
- Digitized bluff crest from LIDAR slope data

2019 CHRN Annual Meeting

Bluff Recession Buffers

- Different shoreforms erode at different rates
 - Feeder bluffs and transport zones/pocket beaches
 - Accretion shoreforms too variable to map
 - Exposure significant
- Bluff recession rates will accelerate with SLR
 - Rate of SLR
- Future erosion was buffered from bluff crest
 - Shoreform (2 shoretypes, 2 exposure categories)
 - Scenario (Mod, High)
 - Planning horizon (2050, 2100)
- Buffers truncated by bedrock geology

San Juan County Assessment

Results

SLR Hazards, Decision Tools, and Data

2019 CHRN Annual Meeting

Tools for Communicating & Making Decisions

Objective: Make informed decisions

How will my shoreline respond to sea level rise? How vulnerable is my property? What type of hazard? When?

What are appropriate responses for my type of shoreline? What can I do about it?

Shoreform Response – Rocky Shores

Created by CGS for Friends of the San Juans

Vertical shift upwards/landward shift in tidal elevation

Similar shift in intertidal habitats

SLR Hazards, Decision Tools, and Data

Shoreform Response – Bluffs

Landward shift of entire beach profile

Bluff erosion enables local and down-drift beaches to adjust

SLR Hazards, Decision Tools, and Data

Shoreform Response – Barrier Beaches

Crest of berm will build higher and shift landward via overwash Landward shift in habitats, dune grass, driftwood, intertidal spawners Habitat/beach loss can occur where landward constrains limits natural migration of beach features

SLR Hazards, Decision Tools, and Data

Shoreform Response – Armored

Static shoreline armor prevents landward migration of shoreline and habitats resulting in habitat and beach loss

SLR Hazards, Decision Tools, and Data

Appropriate Adaptation Approaches

- Geomorphic response
- Planning horizon
- Cost of infrastructure
- Maintenance
- Opportunities
 - Habitat conservation / restoration
 - Increased resilience

SLR Hazards, Decision Tools, and Data

Appropriate Adaptation Approaches - Relocate

• Effective for managing erosion and inundation in the long-term

• Requires adequate upland area for relocation

- Often cheaper than engineered solutions
- Most effective for septic, outbuildings, and highly vulnerable primary structures

Appropriate Adaptation Approaches - Elevate

- Only effective for managing coastal flooding, not erosion
 - Driftwood can damage pilings, elevated structures etc.

Appropriate Adaptation Approaches - Fortify

Shore armor has limitations:

- Only effective for managing erosion, not flooding
- Will not curb all bluff erosion
- Will lead to beach habitat loss

Appropriate Adaptation Approaches - Nourish

• Nourish entire beach profile

• Build a storm berm, to absorb wave energy

• Compensate (short-term) for lost sediment supply or habitat loss

New Data for SLR Planning & Restoration

Plan for accelerated erosion rates

- Long-term bluff recession rates will increase
 - Increase precipitation
 - More frequent "change events"
 - Higher water levels
- Accelerated erosion tied to rate of SLR
 - Uncertainty in WAIS melt

Download the CGS Bluff Recession report: http://coastalgeo.com/publications/bluffrecession/

New Data for SLR Planning & Restoration

Beach Strategies Geodatabase – Phase 1 Obtain from WDFW

- Updated Shoretype Mapping
 - Includes historic shoretypes for all armored shores
- Updated drift cell mapping
 - With linear referencing routes for drift direction
- Updated shore armor mapping
 - Ltd additional data on: toe elevation, condition,
 - Additional armor mapping info: data age, resolution, etc

New Data for SLR Planning & Restoration

Beach Strategies Geodatabase – Phase 2 available in late 2019

- Identify priority beaches for conservation & restoration
 - Sediment Supply
 - Forage Fish Spawning
 - Embayment Support
 - Pocket Beaches
- Multi-scalar, nested geographies
- Queries describing on-the-ground conditions. No black box.
- Linked with hypothesis, justification and supporting principles

Want to learn more? andrea "at" coastalgeo.com

SLR Hazards, Decision Tools, and Data

Nature-Based Dynamic Revetment for Shoreline Stabilization at North Cove

George Kaminsky, Heather Weiner, Diana McCandless, Amanda Hacking Washington State Department of Ecology Coastal Monitoring & Analysis Program

North Cove – Shoreline change

June 1990

August 2016

Google Earth imagery

North Cove – Shoreline change predictions

Washington State Department of Ecology Coastal Monitoring & Analysis Program (2016)

Elevation, ft. (MLLW) 50 -50 -100 -150

High-resolution bathymetry data collected in June 2018

Natural cobble berm vs. built dynamic revetment

Kalaloch Beach 1

North Cove

Pacific Conservation District, 2018

North Cove – Dynamic revetment pre- and post-storm

Before

After

Cobble settled and upper bank exposed; ~30 ft. of scarp lost, exposing the trailer seen in the photo.

Photos courtesy of David Cottrell

North Cove – January 18, 2018 storm

January 23, 2019

Low and Wet: Coastal Flooding Adaptation Efforts at the Dungeness River Delta

Background – why here?

Existing Flood Hazard

December 20, 2018

-15

Background – why here?

Sea Level Rise Inundation Area in 2100, DUNGENESS RIVER DELTA Probabilistic Projections of Changes to Average Daily High Tide Inundation Due to Sea Level Rise

Woodcock Rd

Future Coastal Flood Hazard

Legend

E Anderson Rd

Current Shoreline Mean Higher High Water (MHHW) Annual Percent Chance of Occurrence More Likely to Occur 50% 25% 5% 1% Critical Infrastructure Local Roads Tide Gates

Updated March 2017

Background – why here?

Contemporary habitat degradation in an important habitat zone, due to armoring and septics...that may get worse

Multiple Entity Group convenes

2013: JSKT develops climate change plan. Dungeness delta pops 2016: Hansi Hals convenes a working group to start to work on next steps for landowner outreach

2015: UW PoE students complete a communications toolkit for landowners

Attendees, talking ~ 2x per year

- JSKT
- Washington Department of Ecology
- Clallam County Community Development
- Clallam Conservation District
- WSU Extension
- Local Consultants
- Large landowners (i.e. Duck Club)
- Elected officials
- North Olympic Land Trust and other Non-profits
- North Olympic Salmon Coalition
- Clallam County Health
- Lead Entity for Salmon
- Strait Local Integrating Organization (PSP)
- Washington Sea Grant

Initial Steps:

Built Environment Risk

Built Environment Risk = (Exposure + BEV)/Adaptive Capacity

Initial Steps:

Restoration Opportunity

Restoration Opportunity= Ecosystem Sensitivity/Adaptive Capacity

Overall Prioritization

Outreach Opportunity Score = Built Environment Risk + Restoration Opportunity

Where

Built Environment Risk = (Exposure * Built Environment Vulnerability)/ Adaptive Capacity

And

Restoration Opportunity= Ecosystem Sensitivity/Adaptive Capacity

*note bias in here that we need to work out relative to home value...

We've also got tools:

Sea level rise is happening: learn how you can be ready

Local Sea Level Rise Projections: 0.8-5.1 ft. by 2100 Low Severity 0.8 jeet Value Sequim Bay Region, WA eparing for sea level rise i vour area

Attend a local homeowner workshop Talk to a developer knowledgeable about installing soft shorelines

> Talk to Clallam County Planning 360-417-2420

Call or email the local Shoreline Advice Hotline;

Your community is vulnerable to sea level rise because of the low elevation of shoreline homes and properties.

Sea level rise may flood your home unexpectedly when there is a storm surge.

Plan Ahead for Sea Level Rise

Your Guide to Sea Level Rise Preparedness in the Sequim Bay Region

WHY THE JAMESTOWN BEACH WATER SUPPLY IS IMPORTANT

The homes increased along jumentown Beach Road, as well as many of the homes inland, all receive their water from a marthy articular well that was constructed in the 1980s.

> For more information along the parameters 200 pilos Teles Classes Adaptation Pilos, commen Pilosi High (1920) ([parameters/dis.org] (2004)) 4011

Source: IST Climate Vulnerability Assessment

Missing Pieces

5

The "right" event or evidence

Thank you!

-15

Addressing coastal hazards through the NC Coastal Zone Management Program June 5, 2019 *Coastal Management* ENVIRONMENTAL QUALITY

North Carolina's Coast

320 miles of ocean beaches 10,000+ miles of estuarine shoreline 2.3 million acres of sounds, creeks, and marshes

Coastal tourism generates ~ \$3B in annual revenue and supports ~35,000 jobs

Commercial and recreational fishing contribute ~\$2B

Significant National Seashores, Wildlife Refuges, and other Federal, State, and local protected areas

NC Coastal Area Management Act (1974)

- Balances competing coastal pressures through development permitting and creation of a Coastal Resources Commission
- Addresses coastal growth and related issues through <u>local/state partnership</u>
- Conserves undeveloped land for education and research through a <u>Coastal Reserve Program</u>
- Enhances public access to beaches and coastal waters through grants to local governments

Division of Coastal Management - Sections

Regulatory Program

- 4 District Offices; Local Permitting Officers

Policy and Planning

- Policy development
- CAMA Land Use Planning
- Waterfront Access Grants
- Clean Marina Program

Coastal Reserve Program

- 10 Coastal Reserves
- Focus on research and education

NC Coastal Resources Commission

- Since 1974, establishes policies and rules under the CAMA and the NC Dredge & Fill Act
- 13 members appointed by the Governor, Senate, House
- Membership includes local gov't, fishing, science, agriculture, coastal land development experience
- Designates "Areas of Environmental Concern" and related rules & policies

NC CRC Science Panel on Coastal Hazards

- 10 coastal geologists & engineers
- Scientific input for CRC policy development:
 - Calculating long-term beach erosion rates
 - Establishing sediment criteria for beach nourishment
 - Delineating Inlet Hazard Areas
 - Monitoring and analysis of groin effects
 - Synthesizing information sea level rise

- RSLR projections by region, from ~2 to ~8 inches in next 30 years

Coastal Storms

Hurricanes of the 1990's

Bertha, Fran, Bonnie, Dennis, Floyd

• Hurricane Floyd (1999)

• Heavy rains, 10 ft. storm surge; ~\$8B

• Hurricane Isabel (2003)

• 2000' wide inlet on Hatteras Island

• Hurricane Matthew (2016)

- ~12 inches of rain, \$4.8B damages
- Hurricane Florence (2018)
 - **20-34 inches of rain**, up to 13 ft surge
 - \$17B disaster

Oceanfront Shorelines

- DCM jurisdiction includes:
 - Ocean Erodible Areas
 - Inlet Hazard Areas
- Erosion rate-based setbacks based on size of structures
- Ban on permanent erosion control structures
- Rules governing beach and inlet projects

Graduated Construction Setbacks

- Graduated, erosion-based setbacks based on size of structures and local long-term erosion rates
 - <u>Minimum setback = 60 ft</u>
 - < 5000 sf... x30
 - 5-10K sf... x60
 - 10-20K sf.. x65
 - 20-40K sf.. x70
 - 40-60K sf.. x75
 - 60-80K sf.. x80
 - 80-100Ksf.. x85
 - Over 100K.. x90

Increasing Role of Beach Nourishment

Dec - 2012

Number of Nourishment Projects

Estuarine Shorelines

- Estuarine Shoreline Area of Environmental Concern
 - 30 ft shoreline buffer for non-water dependent structures
 - Limitation on impervious surfaces within 75 ft
- DCM focused on promoting "Living Shorelines"
 - Streamlined permitting and demonstration projects
 - Funding, technical assistance and outreach

Coastal Resilience Initiatives

- Governor Cooper's Executive Order 80
 - Requires state climate risk assessment and resiliency plan
 - Directs agencies to support local resilience planning
- Offering Local Resilience Planning Grants
 - Over past 2 years, funded ~15 projects up to \$25K
- Providing Technical Assistance
 - Partnering w/ NC TNC and NC Sea Grant to support community planning efforts

Questions?

Home * About * Divisions * Division of Coastal Management

Division of Coastal Management

0 0

www.nccoastalmanagement.net & join CAMAgram!

Addressing coastal hazards along the California coast through planning and permitting

WA's Coastal Hazards Resilience Network meeting June 5, 2019

Mary Matella, PhD, Environmental Scientist California Coastal Commission

Coastal Hazards

Bluff erosion at Lands End in Pacifica

Bluff erosion at Lands End in Pacifica

Bluff erosion in Isla Vista

Flooding at Ledbetter Beach, Santa Barbara

Addressing Coastal Hazards

Framework of Coastal Act Policies

Addressing Coastal Hazards & SLR

Interpretive Guidelines for Addressing Sea Level Rise in Local Coastal Programs and Coastal Development Permits

Original Guidance unanimously adopted – August 12, 2015 Science Update unanimously adopted – November 7, 2018

- Principles for Addressing SLR
- Use Best Available Science
- Analyze Planning Scenarios/Development Constraints
- Identify Adaptation Measures
- Design Projects to address hazards <u>and</u> protect coastal resources
- Update LCPs
- Additional Coastal Adaptation Guidance
- Residential
- Critical Infrastructure

Coastal Act Implementation: State & Local Partnership

- Coastal Development Permits (CDPs)
- Local Coastal Programs (LCPs)
 - Land Use Plan & Zoning Ordinance
 - Specify kinds, locations, and intensities of development

Santa Monica Beach Photo Credit: Coastal Commission staff

California Coastal Trail, San Francisco Photo Credit: Coastal Commission staff

Addressing Coastal Hazards & SLR

Phasing approaches, using CDPs and LCPs

Addressing Coastal Hazards & SLR

Policy Tools

Setbacks/project design that incorporate SLRHazard zoning overlaysRestrictions on future armoringDeed restrictions/real estate disclosures

Triggers for additional requirements in the future

Committing to additional planning work

Cardiff Beach

a result 40 Prove a service

Cardiff State Beach Living Shoreline

Photo: Moffatt & Nichol dune simulation

Cardiff Beach

Piedras Blancas

Caltrans Hwy 1 Realignment

Erosion at Ocean Beach, SF

Coastal Development Permits

Great Highway, South Ocean Beach San Francisco

Temporary permit and conditions to allow short term protection while a long term plan is identified and implemented

Erosion at Ocean Beach, SF

Ocean Beach Master Plan

- Stakeholder driven process
- Remove lanes from Great Hwy., and eventually re-route
- Add bike, pedestrian trails
- Dune restoration
- Buried wall to protect wastewater infrastructure
- ✓ Local Coastal Program Amendment
 - Policy development to implement
 Ocean Beach Master Plan

Lessons Learned

- Context/Scale matters
 - Need willing landowners and partners
- Long timeframes necessary for larger project extents
- Acknowledge risk related to public trust resources
- Incentives for local governments to update policies

Next Steps

Outreach Guidance & Briefings Funding Local Assistance Grant Program

Model Language

Residential & Critical Infrastructure Adaptation

Coordination

Interagency projects

Thank you

https://www.coastal.ca.gov/climate/slr/ mary.matella@coastal.ca.gov

Photo Credit: Lauren Garske-Garcia

Scott's Creek Santa Cruz County

HAWAII COASTAL ZONE MANAGEMENT PROGRAM:

ADDRESSING COASTAL HAZARDS

Washington Coastal Hazards Resilience Network 2019 Annual Meeting

June 5, 2019

Hawaii CZM Program

Coastal Zone Management HAWAII STATE OFFICE OF PLANNING

OVERVIEW OF THE COASTAL ZONE MANAGEMENT PROGRAM

Coastal Zone Management Area

§205A-1 Definitions.

"Coastal zone management area" means all lands of the State and the area extending seaward from the shoreline to the limit of the State's police power and management authority, including the United States territorial sea;

"Lead agency" means the office of planning;

Coastal Erosion and Hazards

Coastal Erosion and Hazards

Coastal Erosion and Hazards

Source: Farmer Ray

CZM Supported Projects

- Assessing the Feasibility and Implications of Managed Retreat Strategies for Vulnerable Coastal Areas in Hawai'i
- Updating the Hawaii Historical Shoreline Database
- Development of Probabilistic Tsunami Design Zone Mapping
- Building Code Amendments for Coastal Hazards and Climate Change - Oahu

Hawai'i Sea Level Rise Viewer

http://www.pacioos.hawaii.edu/shoreline/slr-hawaii/

Ocean Resources Management Plan

§205A-3 Lead agency.

The lead agency shall:

(11) Coordinate the implementation of the ocean resources management plan. [L 1977, c 188, pt of §3; am L 1979, c 200, §2; am L 1989, c 356, §5; am L 1993, c 258, §2; am L 1995, c 104, §6; am L 2001, c 169, §4]

Focus on integrated management and collaboration

Collaborative Efforts

§205A-3 Lead agency.

The lead agency shall:

(7) Prepare and periodically update a plan for use of coastal zone management funds to resolve coastal problems and issues that are not adequately addressed by existing laws and rules;

In order to 'resolve coastal problems and issues', the ORMP:

- Facilitates enhanced understanding of each other's responsibilities and challenges, finding management gaps and **opportunities for action**
- Tracks partner progress in implementing individual mandates though data collection
- Encourages partnership on Action Team projects and implementing actions identified as management gaps

A Brief History of Surfing, 2014

Mahalo!

http://planning.hawaii.gov/czm

State of Hawaii Office of Planning P.O. Box 2359, Honolulu, Hawaii 96804 (808) 587-2846

Hawaii CZM Program Coastal Zone Management HAWAII STATE OFFICE OF PLANNING

Revamping a resource: the CHRN website

Jackson Blalock, Washington Sea Grant Felicia Olmeta-Schult, Department of Ecology Karen Morrill-Mcclure, Washington Sea Grant

- Project context and motivations
- Website walk-thru
- Next steps: how CHRN (you!!!) can help

WASHINGTON COASTAL HAZARDS RESILIENCE NETWORK

HOME BLOG FEATURED PROJECTS ABOUT US

Strengthening the resilience of Washington's coastal communities to natural hazards impacts through collaboration, education, and resource exchange.

PROJECTED SEA LEVEL RISE FOR WASHINGTON STATE - A 2018 ASSESSMENT

BLOG: MEMBER UPDATES

New material available: <u>Community Update Meeting & Open House</u> <u>Willapa Shoreline Erosion Protection Demonstration Project</u>

THE WASHINGTON COASTAL RESILIENCE PROJECT

Goal: Increase regional capacity to build resilience to changes in relative sea level.

Objective: Produce sea level rise projections, guidance, & tools that are usable by coastal communities.

THE WASHINGTON COASTAL RESILIENCE PROJECT

'The Time To Act Is Now,' Says Yellowing Climate Change Report Sitting In University Archive

4/01/16 12:15pm • SEE MORE: SCIENCE & TECHNOLOGY ~

Ø the **ONION**

Audiences

Local jurisdictions' staff, commissioners

Community members engaged in planning and development

Where should we go to assess SLR-related community needs?

Sea Level Rise: Strategic Communications Planning: a tool to help identify and prioritize key messages

hurdle: A2 resources - info-bas...
hurdle: A3 resources - network...
hurdle: C perspective - mental...
influencer: C2 local/tribal repre...
influencer: D1 res. prov. - instit...
influencer: E2 community orgs
issue: A1 dev - developed and...
loc: Pacific
solution-education-local gov't
solution-education-property o....
solution-mental models-long-t...
solution-networks-collaboration
solution-resources-case studie....
solution-setbacks/zoning

This worksheet is based on the Smart Chart strategic communications planning tool from Spitfire Strategies and COMPASS's Message Box, used for strategic communicatins by ReefResilience.org

2

Materials development

PORT OF ILWACO

Outreach events King Tides Viewing Parties, SCPG trainings

Takeaways

Lack of ability to apply info in context

- "gradient of complexity": multiple audiences
- "5-15-45 minute" approach
- Project-based application

Communicate basics – simplify approaches

- "How much, when, what can I do about it?"
- Relate to existing activity and events
- Focus on visuals: graphics, photos and maps

Where should these (and more) products live?

WASHINGTON COASTAL HAZARDS RESILIENCE NETWORK

HOME BLOG FEATURED PROJECTS ABOUT US

Strengthening the resilience of Washington's coastal communities to natural hazards impacts through collaboration, education, and resource exchange.

PROJECTED SEA LEVEL RISE FOR WASHINGTON STATE - A 2018 ASSESSMENT

BLOG: MEMBER UPDATES

New material available: <u>Community Update Meeting & Open House</u> Willapa Shoreline Erosion Protection Demonstration Project

- Mission: "Orientation"
- Content: "gradient of complexity" to meet multiple audiences, targets usability
- Hazard-specific introduction pages

- Mission: "Orientation"
- Content: "gradient of complexity" to meet multiple audiences, targets usability
- Hazard-specific introduction pages
- Hazard-specific research pages (data, tools, etc.)

- Mission: "Orientation"
- Content: "gradient of complexity" to meet multiple audiences, targets usability
- Hazard-specific introduction pages
- Hazard-specific research pages (data, tools, etc.)
- Examples and resources for project development

- Mission: "Orientation"
- Content: "gradient of complexity" to meet multiple audiences, targets usability
- Hazard-specific introduction pages
- Hazard-specific research pages (data, tools, etc.)
- Examples and resources for project development
- Network activity

WASHINGTON COASTAL HAZARDS RESILIENCE NETWORK

Strengthening the resilience of Washington's coastal communities through collaboration, education, and knowledge exchange.

Orienting you to relevant science, best practices, and other resources related to coastal hazards.

Updates on the Willapa Shoreline Erosion Protection Demonstration Project

Events for week of June 3, 2019

« Previous

Q

What's on the horizon?

Get involved!

- Review website before release
- Share useful coastal hazards tools and research
- Write a blog post: wacoastalnetwork@gmail.com
- Share case studies of adaptation efforts
- SHARE and USE the website in your work

Stay in touch! with everyone in this room...

with WAcoastalnetwork.com...

jackbla@uw.edu

Adaptation Case Studies

PRESENTED BY

Katrina Radach^{1,2}, Jackson Blalock^{1,2}, Alex Rosen³

1. The Nature Conservancy, 2. Washington Sea Grant, 3. Department of Ecology

Project Background

• Department of Ecology:

- Communities were asking for examples
- Difficult to follow up with communities
- Discovered case studies would be a valuable tool
- Strong need for capturing relevant risk reduction examples

• TNC with WCRP

- Lack of alternative measures
- Knowledge gaps
- Access to information
- Locally applicable solutions
- Staffing challenges
- Merging efforts between Ecology, WCRP, and TNC

Surveys – Still Active!

- <u>bit.ly/WAadaptation</u> Case sensitive!
- 26 responses, so far...
- Erosion = primary hazard being mitigated
- Structural mitigation strategies most common
- Damage or threat of damage is greatest motivation for these efforts
- Diverse array of opportunities to enhance outcomes, most prominently:
 - Access to data
 - Engineering guidance
 - Enhanced cross-agency collaboration

Case Study Interviews

- Regulatory Requirements
- Cost / Funding Dynamics
- Partnerships
- Challenges / Barriers
- Lessons Learned
- Identification of local "champions"
- Top Recommendations

Lessons Learned

- Work with agencies at the beginning. Conversations around collaboration
- Design with Nature
- Hire experienced consultants/engineers
- Budget and plan ahead
- And More!

Coastal Hazards Adaptation Examples

Sea Grant Secology De Nature

Interested in submitting a new project example? Take our Coastal Hazards Mitigation and Risk Reduction Project Survey

THE WASHINGTON COASTAL RESILIENCE PROJECT

The Who

- Homeowners & Non-Technical Audiences
- Local Governance
- Tribes
- Conservation Districts
- Planners
- Consultants
- Marine Resource Committees
- Anyone who works or is interested in Coastal Hazards

WASHINGTON COASTAL HAZARDS RESILIENCE NETWORK

Home Coastal Hazards v Research v Local Projects v The Network v 🔎

Strengthening the resilience of Washington's coastal communities through collaboration, education, and resource exchange.

Orienting you to relevant science, best practices, and resources related to coastal hazards.

http://www.wacoastalnetwork.com

Katrina Radach Katrina.Radach@tnc.org Alex Rosen, CFM Alex.Rosen@ecy.wa.gov Jackson Blalock, ASLA Jackbla@uw.edu

CHRN 2019 Annual Meeting List of Attendees				
Last Name	First Name	Affiliation	E-mail	
Bacon	Thomas	City of Olympia	thomasbacon28@gmail.com	
Bindschadler	Robert	NASA retired	bobbindschadler@gmail.com	
Bindschlader	Elizabeth	Neighborhood Emergency Preparedness	egordon123@aol.com	
Blalock	Jackson	Washington Sea Grant	jackbla@uw.edu	
Bogeberg	Molly	The Nature Conservancy	molly.bogeberg@tnc.org	
Braddock	Catherine	EcoAdapt	Kathryn.Braddock@EcoAdapt.org	
Carmony	Jay	State Parks	jay.carmony@parks.wa.gov	
Curtiss	Greg	Coastal Engineer @ Golder Associates	gcurtiss@golder.com	
Decker	Kevin	uw	kadecker@uw.edu	
Dennehy	Casey	WA Dept. of Ecology	casey.dennehy@ecy.wa.gov	
Dixon	Dennis	Pierce County	dennis.dixon@piercecountywa.gov	
Dolcimascolo	Alexander	WA DNR-Washington Geological Survey	alexander.dolcimascolo@dnr.wa.gov	
Dye	Paul	Washington Sea Grant	pbdye16@uw.edu	
Eungard	Daniel	WA DNR-Washington Geological Survey	daniel.eungard@dnr.wa.gov	
Faghin	Nicole	uw	faghin@uw.edu	
Fishman	Sydney	WA Dept. of Ecology	syfi461@ecy.wa.gov	
Gao	Yongwen	Makah Fisheries Management, Research Scientist	gaoy@olypen.com	
Gates	Tim	WA Dept. of Ecology	tim.gates@ecy.wa.gov	
Glaub	Gretchen	Snohomish County	gretchen.glaub@snoco.org	
Greiner	Courtney	Swinomish Indian Tribal Community	cgreiner@swinomish.nsn.us	
Hamer	Chelsea	State Parks	chelsea.hamer@parks.wa.gov	
Idziorek	Katherine	UW Dept. of Urban Design & Planning	kidzi@uw.edu	
Kaminsky	George	WA Dept. of Ecology	gkam461@ecy.wa.gov	
Кпарр	Robert	Jamestown S'Kallam Tribe	rknapp@jamestownTribe.org	
Lavin	Paige	University of Washington	pdlogan@uw.edu	
Levkowitz	Michael	Washington State Emergency Management Division	Michael.Levkowitz@mil.wa.gov	
Lunde	Becky	NOAA Office for Coastal Management	rebecca.lunde@noaa.gov	
MacLennan	Andrea	Coastal Geologic Services.	andrea@coastalgeo.com	

CHRN 2019 Annual Meeting List of Attendees				
Last Name	First Name	Affiliation	E-mail	
Marcoe	Keith	Lower Columbia Estuary Partnership	kmarcoe@estuarypartnership.org	
McTeague	Brian	Squaxin Island Tribe, Natural Resources Dept, Quantitative Services Manager	bmcteague@squaxin.us	
Miller	lan	Washington Sea Grant	immiller@uw.edu	
Mull	Jeremy	Coastal Engineer at AECOM.	jeremy.mull@aecom.com	
Nelson	Kira	City of Olympia	knelson@ci.olympia.wa.us	
Norton	Jessica	State Parks	jessica.norton@parks.wa.gov	
Nouri	Youness	Moffat & Nichol	ynouri@moffattnichol.com	
Olmeta-Schult	Felicia	WA Dept. of Ecology	folm461@ecy.wa.gov	
Paine	Mitch	King County	mpaine@kingcounty.gov	
Parsons	Jeff	Herrera Inc.	jparsons@herrerainc.com	
Penny	Meredith	Island County	m.penny@co.island.wa.us	
Perkins	Ted (Dwight)	FEMA	dwight.perkins@fema.dhs.gov	
Peterson	Henry	Department of Health	henry.peterson@doh.wa.gov	
Radach	Katrina	The Nature Conservancy	Katrina.Radach@tnc.org	
Raymond	Crystal	uw	clrfire@uw.edu	
Roop	Heidi	University of Washington Climate Impacts Group & School of Public Health	hroop@uw.edu	
Sammons	Julian	Skokomish Indian Tribe	jsammons@skokomish.org	
Shaughnessy	Gwen	Lynker/NOAA Office for Coastal Management.	gwen.shaughnessy@noaa.gov	
Shipman	Hugh	WA Dept. of Ecology	hshipman@gmail.com	
Siemann	Dan	WA DNR	dan.siemann@dnr.wa.gov	
Spilsbury Pucci	Dawn	Island County Salmon Recovery	d.pucci@co.island.wa.us	
Strong-Cvetich	Luke	Jamestown S'Kallam Tribe	lstrong@jamestowntribe.org	
Talebi	Bobbak	WA Dept. of Ecology	bobbak.talebi@ecy.wa.gov	
Vogel	Jason	UW CIG	jmvogel@uw.edu	
Walker	Brynne	Pierce County Surface Water Management (Floodplain Management Planner)	brynne.walker@piercecountywa.gov	
Weiner	Heather	WA Dept. of Ecology	hbar461@ecy.wa.gov	
Whitely-Binder	Lara	King County	lwbinder@kingcounty.gov	
Williams	Terry	Tulalip Tribes		

NAME	MY PROJECT in 10 words or Less
Félicia OLHETA- SCHULT	Incorporating SLR/climate change considerations into capital grant programs.
Sydney Fishman Kathugn Braddock	Interviewing local govs about bulkhead reg. implementation The state of Marine & Coastal Climate adaptation in N. America
KHTRINH RHDHCH	connecting our communities to updated science LacReating tools, Resources, & collaborative efforts
BECKY LUNDE	Helping improve state = local access to Federal resources, including ###
KIRA NELSON	Presenting Pot, IMPACTS + ADAPTATION STRATEGIES TO THE OLYMPIA COMMUNITY
BRIAN MOTENGUE	SLR RISK ASSESSMENT & MITIGATION PLANNING FOR THE SOUTH SALISH SEA. SQUAYINISLAND TRICE

NAME	CONTACT ME ABOUT	MORE ABOUT
Sydney Fishman	Bulkhead regs; soft shore alternatives	SLR + buikhead impacts
Félicia - SCHULT	SLR + Capital grant programs; CHAN Website - Membership + blog	SLR in grants + projects
BECKY LUNDE	Aligning haz mit actions and adaptation strategies across planning	Adaptation planning in 14
Manager Reports	efforts and new NOAA tools.	railessemme streets
KATRINA RADACH	CReating Resources / tools,	community adaptation
	Callab dealine as a second as the and	eftorts Plantation
	Collaborative approaches i barrie communicating science	planning i pelicy
HENRY PETERSON	Collaborative approaches i barrie communicating science Agency word in ghim, education, social marketing, fecal pollation	SLR imports on weste Water & septic systems